Coupling of Dispersive Tsunami Propagation and Shallow Water Coastal Response

نویسندگان

  • F. Løvholt
  • G. Pedersen
  • S. Glimsdal
چکیده

The key issue of this article is the concept of combining a model dedicated to dispersive large scale propagation of tsunamis with ComMIT, developed and made freely available by NOAA, that is a state of the art tool for tsunami impact studies. First, the main motivation for this approach, namely the need for efficient computation of runup of tsunamis from submarine/subaerial slides and certain types of earthquake, is discussed. Then the models involved are presented. We describe in some detail the dispersive model component which is a Boussinesq type model that is recently developed for tsunami propagation purposes. Finally, the performance and flexibility of the joint model approach is illustrated by two case studies including inundation computations at selected cites. The potentially disastrous, but small probability, flank-collapse event at the La Palma Island is used as an example of slide generated tsunamis where dispersion plays an important role. The second example is a tsunami from a potential inverse thrust fault at the Lesser Antilles. In this case dispersion during propagation is important for some regions, but not for others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective coastal boundary conditions for tsunami wave run-up over sloping bathymetry

An effective boundary condition (EBC) is introduced as a novel technique for predicting tsunami wave runup along the coast, and offshore wave reflections. Numerical modeling of tsunami propagation in the coastal zone has been a daunting task, since high accuracy is needed to capture aspects of wave propagation in the shallower areas. For example, there are complicated interactions between incom...

متن کامل

Effective Coastal Boundary Conditions for Dispersive Tsunami Propagation

We aim to improve the techniques to predict tsunami wave heights along the coast. The modeling of tsunamis with the shallow water equations has been very successful, but often shortcomings arise, for example because wave dispersion is neglected. To bypass the latter shortcoming, we use the (linearized) variational Boussinesq model derived by Klopman et al. [12]. Another shortcoming is that comp...

متن کامل

Near-coast tsunami waveguiding: phenomenon and simulations

In this paper we show that shallow, elongated parts in a sloping bottom toward the coast will act as a waveguide and lead to large enhanced wave amplification for tsunami waves. Since this is even the case for narrow shallow regions, near-coast tsunami waveguiding may contribute to an explanation that tsunami heights and coastal effects as observed in reality show such high variability along th...

متن کامل

Source Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami

The December 26, 2004 tsunami was perhaps the most devastating tsunami in recorded history, causing over 200,000 fatalities and widespread destruction in countries bordering the Indian Ocean. It was generated by the third largest earthquake on record Mw=9.1–9.3 and was a truly global event, with significant wave action felt around the world. Many measurements of this event were made with seismo...

متن کامل

A Boundary Fitted Nested Grid Model for Modelling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. We develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010